Оксигенотерапия в спорте

Проблема гипоксии сегодня очень актуальна. Патологические сдвиги, возникающие в организме во время кислородного голодания, сложны и многообразны. Патологическая картина гипоксии определяется множеством причин: продолжительностью кислородной недостаточности, условиями внешней среды, характером тренировок, функциональным состоянием спортсмена, индивидуальной чувствительностью спортсмена к дефициту кислорода, особенностями метаболических процессов, присущими отдельным органам и тканям, другим системам.

Гипоксемия, гипоксия приводят к существенным изменениям обменных процессов. Биохимические изменения влекут за собой существенные гемодинамические нарушения, патологические сдвиги в системе микроциркуляции и т.д.

Отмечено, что при гипоксии и переутомлении нарушается мобилизация гликогена, что, по-видимому, обусловлено падением запасов катехоламинов в миокарде и снижении адренореактивности сердца.

Нарушение ионной проводимости обусловлено изменениями тканевого обмена при гипоксии и является причиной возникновения боли, характерной для "болезненного плеча", плечелопаточного периартрита и других заболеваний.

Отмечено, что признаками гипоксии миокарда, по данным ЭКГ, являются смещение сегмента S-T, уплощение зубца Т, учащение ритма сердца и др. Гипоксия создает благоприятные условия для развития аритмий или для усиления уже имеющихся.

Кислородное голодание (гипоксия) увеличивает сосудистую проницаемость, вызывает набухание соединительной ткани, растворение коллегановых волокон, клеточную пролиферацию, дегенеративные изменения и некрозы стенок сосудов (Н.Н. Сиротин, 1963г). Местная гипоксия ведет к повышенному выведению воды и белков из крови через сосудистую стенку, что, в свою очередь, ограничивает диффузию кислорода в ткани. При дефиците кислорода нарушается кислотно-щелочной баланс и в организме появляется избыток молочной кислоты.

Существует множество методов введения кислорода с лечебной целью. Кислород вводят подкожно, периартикулярно и в полость сустава. Оксигенотерапия не вызывает повреждения тканей, активизирует кровообращение, усиливает репаративную регенерацию, способствует эффективному рассасыванию кровоизлияний, гематом, нормализации окислительного метаболизма, тем самым улучшается трофика тканей.

Скорость снабжения ткани кислородом зависит от объема крови, омывающей ткани, а этот объем, в свою очередь зависит от скорости кровотока. Несоответствия количества кислорода метаболическим потребностям мышц, возникающее при действии различных факторов (многократное увеличение потребности мышечной ткани в кислороде при напряженной мышечной деятельности, снижение содержания кислорода во вдыхаемом воздухе, респираторное и циркуляторное нарушения, изменения дыхательной функции крови и др.), приводит к изменениям кислородных режимов мышечной ткани, к развитию тканевой гипоксии.

Гипоксия является важным патогенетическим звеном нарушений энергетического обмена в мышечной ткани не только при напряженной мышечной деятельности, но и в условиях покоя: в высокогорье, при действии факторов авиакосмического полета, при гипербарии, гипотермии, гипокинезии. При клинических нарушениях периферического кровообращения, мышечных дистрофиях различного генеза гипоксия мышц лимитируется функционированием кислородозависимых метаболических систем мышечной ткани даже в условиях покоя.

Картина распределения кислорода в скелетных мышцах весьма динамична: наряду с участками с высоким значением рО2, выявляются участки со сниженными значениями рО2, последние нестабильны. Реакция здоровых и патологически измененных тканей и органов различна и зависит от исходного состояния гемодинамики.

Для разработки методов профилактики и лечения травм и заболеваний ОДА большое значение имеет вторичная тканевая гипоксия, которая развивается в результате выраженного несоответствия между объемом доставки кислорода и потребностью в нем тканей.

В связи с этим становится очевидной необходимость использования оксигенотерапии после значительных физических нагрузок, при травмах и заболеваниях опорно-двигательного аппарата.

Приведенные данные показывают, что оксигенотерапия при травмах и заболеваниях могла бы адекватным патогенетическим методом лечения, так как в условиях нарушения микроциркуляции это может обеспечить нормальное кислородное питание тканей.

Ингаляционный метод введения кислорода в организм наиболее удобен в условиях учебно-тренировочных сборов. Для этого используют кислородные концентраторы. Кислород необходимо увлажнять через банку Боброва, наполненную на 2/3 водой, вдыхать его через маску или канюли. Маска плотно накладывается на рот и нос и удерживается резиновыми лямками.

Кислород подается со скоростью 5-6 л/мин. Длительность вдыхания – 3-5 мин (при острой травме в первые трое суток ингаляцию проводят многократно в течение дня). Этот способ можно многократно использовать в первые дни после случившейся травмы (заболевания ).

Кислород можно так же вводить через носовые катетеры ( при помощи У-образного тройника ). Два катетера вводят через нижние носовые ходы непосредственно в носоглотку. Вдох спортсмен должен совершать активно через нос.

Применение катетеров для оксигенотерапии исключается при воспалительных заболеваниях слизистой носа и горла, нарушениях носового дыхания, при резко повышенных рефлексах слизистой верхних дыхательных пути.

Более эффективное использование кислорода, подаваемого из баллона, достигается путем применения специальных масок с вдыхательным и выдыхательным клапанами. При введение чистого кислорода с помощью маски уровень оксигенотерапии в артериальной крови быстро и значительно повышается.

Сеансы с оксигенотерапии сочетаются с сегментальным массажем, который целесообразно до оксигенотерапии. Такая тактика обеспечивает увеличение микроциркуляции и усвоение большего количества вдыхаемого кислорода.

Один грамм гемоглобина связывает 1,33 мл кислорода. Следовательно 100 мл крови, содержащие 15 г гемоглобина ( если кровь полностью насыщена ) приносят 20 мл кислорода или 19,4 мл, если она насыщена на 97 %.

При вдыхании чистого кислорода при нормальном атмосферном давлении, то есть когда парциальное давление его в альвеолярном воздухе будет 673 мм рт. ст., гемоглобин крови полностью насыщен кислородом, а в плазме количество растворенного кислорода увеличивается до 2,02 об %, т.е. в 100 мл крови будет содержаться 2,02 физически растворенного кислорода. При этом парциальное давление кислорода в крови увеличивается в 1,5 раза.


ДЕЙСТВУЕТ

СПЕЦПРЕДЛОЖЕНИЕ

для фитнес- и велнес-центров, медицинских и ветеринарных клиник, детских садов, косметических салонов и студий красоты



buy cipro uk kamagra 50mg uk vad kostar viagra på apoteket kamagra polen kaufen huvudvärk av viagra tadacip vs kamagra viagra billigt på nätet kamagra buy online uk va kostar viagra viagra postförskott where can i buy viagra in leicester viagra spanien kaufen viagra doping wada kamagra fast co uk wordpress viagra köpa köpa cialis flashback where to buy viagra over the counter in uk